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ACCURATE FREE VIBRATION ANALYSIS OF
SHEAR-DEFORMABLE PLATES WITH

TORSIONAL ELASTIC EDGE SUPPORT
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The modified Superposition–Galerkin method is utilized to solve the free-vibration
problem of shear deformable plates resting on uniform elastic foundations. Lateral
displacement of the plate is forbidden at the boundaries. Due to elasticity in the support,
edge rotation is opposed by bending moments proportional to the degree of rotation.
Results of a study conducted on thick Mindlin plates are presented. The analytical
procedure is found to be much more efficient than that involved in the traditional
superposition method and good convergence is encountered.
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1. INTRODUCTION

It is well known that actual restraint along the edges of rectangular plates often deviates
from that provided by classical edge conditions traditionally denoted as simply supported,
clamped and free. Nevertheless, such edge conditions are fairly easy to formulate
mathematically and are therefore usually assumed to apply when investigating the static
and dynamic behaviour of rectangular plates. In many cases computed results are found
to be satisfactory for design purposes. There are problems however, where such simplified
modelling of plate edge conditions leads to significant error. The purpose of this paper
is to examine one such family of problems related to rectangular plate free vibration.

It is generally agreed that a certain amount of elasticity exists in plate edge supports.
This elasticity manifests itself in two ways. First, rotation of the plate edge about an axis
running along that edge, at the plate mid-surface, may no longer be zero, as it is considered
to be in clamped edge conditions. Rather, it may be opposed by a moment proportional
to the degree of rotation. One calls this torsional elastic edge support. Furthermore, lateral
displacement along the edge of the plate may not be completely forbidden but may be
opposed by forces proportional to the displacement. One calls this lateral elastic edge
support. In a series of recent papers the author has conducted a free vibration analysis
of thin rectangular plates with various combinations of uniform elastic support
distributions along the edges [1]. Results of an even more recent study where the stiffness
of the elastic edge restraint are allowed to have any arbitrary distribution along the edges
have also been published [2].

All of the above results are restricted in application in that they apply to thin isotropic
plates only, i.e., plates where the effects of deformation due to transverse shear forces may
be neglected. It is well known that in the analysis of thick (Mindlin) plates, or even thin
composite plates where resistance to transverse shear force induced deformation is
relatively weak, the effects of this latter deformation cannot be neglected in analysing plate
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behaviour. This was well recognized by Reissner and Mindlin and, in fact, Mindlin
subsequently published his well known formulation of the differential equations and
boundary conditions generally accepted as being applicable in the study of transverse shear
deformable plates [3]. He also took into account the effects of rotary inertia on plate free
vibration.

In this paper a free vibration analysis is conducted of thick shear-deformable plates with
rotary elastic edge support utilizing the Mindlin theory. Lateral displacement along the
plate edges is forbidden. Rotary elastic stiffness is considered to be uniform along each
edge.

Later it will become obvious to the reader that the same analytical approach can be
exploited to handle problems where not all of the plate edges have the torsional elastic
support described here. One could, for example, have two adjacent edges with elastic
support, while the other two have classical simple support. Alternatively, the latter two
edges could be free, or given clamped edge support.

2. MATHEMATICAL PROCEDURES

The superposition method has been widely used by the author and his colleagues in
obtaining analytical type solutions for the free vibration frequencies and mode shapes of
thin rectangular plates with various types of boundary conditions. More recently it has
been successfully applied to the problem of analysing shear-deformable thick plates and
composite plates with classical type boundary conditions [4–6].

In every case it has been found to work very well, however, the amount of work involved
in exploiting it for the analysis of this latter family of plates has turned out to be excessive.
For this reason the author developed, what is referred to as the Superposition–Galerkin
method. This is essentially a modified superposition method which gives equally accurate
results with a vastly reduced work requirement. This modified method is described in
considerable detail in reference [7] and has been utilized to analyse composite plates with
classical edge support in reference [8]. The analytical procedure utilized here follows very
closely that described in the above reference [7] so only a brief description will be provided
for the sake of completeness, with emphasis on that portion of the analysis which differs
from that presented earlier.

The free vibration of a thick rectangular plate with uniform rotary elastic support along
all four edges is chosen for analysis. This plate is shown schematically on the left side of
Figure 1. An analysis is achieved by superimposing the four rectangular plate forced
vibration problems (building blocks) shown on the right side of the figure. Each building
block is driven by a distributed harmonic bending moment acting along one edge. A
solution is obtained by constraining driving coefficients appearing in these building block
solutions in such a way that their combined assembly satisfies the prescribed boundary
conditions of the plate problem of interest.

2.1.      

The three governing differential equations as presented by Mindlin are written in
dimensionless form as [4],
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A list of symbols appears in the Appendix. Expressions for dimensionless shear forces,
moments, etc., are given as
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The first building block has simple support along the non-driven edges. Lateral
displacement is forbidden along the driven edge. The amplitude of the driving moment
acting along this latter edge has a spatial distribution given in series form as

Mh = s
KK

m=1,2

Em sin mpj. (5)

In view of the prescribed boundary conditions it follows that plate lateral displacement,
cross-section rotations etc., may be expressed as

W(j, h)= s
KK

m=1

Xm (h) sin mpj, Cj (j, h)= s
KK

m=1

Ym (h) cos mpj,

Ch (j, h)= s
KK

m=1

Zm (h) sin mpj. (6)

Figure 1. Building blocks utilized in analysing a shear-deformable plate with torsional elastic support on all edges.
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The Galerkin method is now employed to compute the response of the first building
block to any Fourier component, let one say the mth component, of the driving moment
distribution. Toward this end the functions Xm (h), Ym (h), etc., of equations (6) are
expanded in appropriate series form. The Galerkin method requires that each term in these
series must satisfy all prescribed boundary conditions along the edges h=0 and h=1. It
is shown in reference [8] that these conditions are satisfied by the following expansions for
these functions:

Xm (h)= s
K

i=1,2

Ei sin iph, Ym (h)= s
K

j=1,2

Ej sin jph, (7, 8)

Zm (h)= s
K

l=1,2

El cos (l−1)ph+Em
h2

2
. (9)

Equations (7)–(9) employ standard Fourier series. It is easily shown that addition of the
quadratic term to equation (9) permits the moment condition to be satisfied along the
driving edge. Following the Galerkin procedure, the above series are differentiated
term-by-term, as required, and substituted into the governing differential equations. The
resulting three quantities obtained, designated as Q1, Q2, and Q3, are each expanded in
an appropriate Fourier series of K terms, with each coefficient in these new Fourier
expansions set equal to zero. This is in keeping with the Galerkin procedure and results
in a set of three K non-homogenous algebraic equations relating the unknown coefficients
Ei , Ej , etc. Solution of this set of equations provides the response of the first building block
to any Fourier driving component. Sine series have been used in the first two expansions
above with a cosine series used in the third so that advantage may be taken of function
orthogonality. With a solution for the first building block available it will be obvious that
solutions for the other three building blocks may be extracted from this first building block.
The remaining three building blocks differ from the first only in that they are driven along
different edges.

2.2.     

We look at the problem of the plate with uniform rotational elastic restraint. We require
four elastic stiffness constants to characterize the boundaries. These constants are denoted
as k1, k2, k3, and k4, where subscript 1 pertains to the edge, h=1, with the subscripts 2,
3, etc., pertaining to the other edges as we move counterclockwise around the plate. It
follows immediately that the boundary conditions which must be satisfied by the
superimposed building blocks can be written in dimensionless form as:

1Ch /1h+K1RCh =0=h=1, 1Cj /1j+K2RCj =0=j=1, (10, 11)

1Ch /1h−K3RCh =0=h=0, 1Cj /1j+K4RCj =0=j=0. (12, 13)

Here, the dimensionless torosional elastic coefficients are K1R = k1b/D, K2R = k2a/D,
K3b = k3b/D and K4R = k4a/D.

Well established procedures are followed in generating the eigenvalue matrix elements.
One considers the four building blocks to be superimposed, one-upon-the-other, and
begins by expanding the contribution of each building block to the left side of equation
(10) in series form. Here it is advantageous to use a sine series. It is required that each
net coefficient in this new series should equal zero. Using KK terms in this series, KK
homogenous algebraic equations relating the four KK unknown Fourier coefficients used
in representing the driving moments are generated. An identical procedure is followed to
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enforce the moment-edge rotation equilibrium conditions along the other three edges. This
gives rise to a total of four KK homogenenous algebraic equations relating the four KK
unknown coefficients. The coefficient matrix of this set of equations forms the present
Eigenvalue matrix. Eigenvalues are those values of the parameter l2 which cause the
determinant of the matrix to vanish. With eigenvalues established, mode shapes associated
with the eigenvalues are obtained after setting one of the non-zero Fourier driving
coefficients equal to unity and solving for the others. It is discussed in reference [6] how
problems of this type may permit one half of the eigenvalues matrix to be extracted from
the other. Caution must be used so that correct changes of sign are introduced, when
required, on building up the second half of the matrix.

3. PRESENTATION OF RESULTS

It will be immediately appreciated by the reader that it is not possible to present enough
computed results to cover all possible design needs. For that reason data will be presented
for first mode free vibration of square plates only and for two specific values of
thickness-to-edge length ratios, fh . Furthermore, equal elastic stiffness ratios will be used
on all edges with elastic support.

In Figure 2 first mode eigenvalues are plotted against the rotational elastic coefficient,
KIR , for a plate with equal elastic support along all four edges. Values of fh , utilized are
0·01, corresponding to a fairly thin plate, and 0·10, corresponding to a much thicker plate.
All results are based on the thick plate theory. In all such problems there are frequency
limits which one must approach as the torsional coefficient approaches values of zero or
infinity. Here, these frequency limits are, of course, those of the simply supported plate,
and the fully clamped plate, respectively. All limits were computed utilizing the
computational procedure described in reference [7]. Convergence studies have shown that

Figure 2. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on all four
edges (lower range of KIR ). fh : ——— 0·01; — — — 0·10.
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Figure 3. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on all four
edges (upper range of KIR ). Key as Figure 2.

Figure 4. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on all three
edges (lower range). Key as Figure 2.

values of KK=7, and K=23, give four digit accuracy in computed eigenvalues. These
values for series summations have been used in all computations conducted for studies
reported here. The reader will appreciate that increasing the quantity K gives a better series
representation of the true building block solution. Increasing the quantity KK improves
the degree to which the boundary conditions are satisfied. Both of these parameters should
be adjusted upward if higher convergence is required.

Lower limits for all eigenvalue curves presented here are 19·73, for a value of fh =0·01,
and 19·05, for fh =0·10. The lower limit based on thin plate theory is, of course, 2p2 or
19·74. As expected, Eigenvalue limits computed here are slightly below this with much
greater difference encountered for the thicker plate. It will be recalled that in classical thin
plate theory the plate transverse shear stiffness is essentially considered to be infinite and
effects of rotary inertia are neglected.

The curves of Figure 2 are seen to rise rapidly at first, indicating that free vibration
frequencies are very sensitive to torosional coefficients in the range 0·0QK1R Q 20.
From there on the plate fundamental frequency is much less sensitive to such change. In
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Figure 5. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on three
edges (upper range). Key as Figure 2.

Figure 6. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on two
adjacent edges. Key as Figure 2.

Figure 3 the same curves continue on with a higher range of edge stiffness. It is seen that
both curves approach their computed upper limits as the edge stiffness becomes arbitrarily
large. The upper curves in the figures are of less immediate interest as they closely follow
the expected trajectory based on thin plate theory. They serve a useful purpose, however,
in that they allow one to gauge the magnitude of the error that would be encountered if
one failed to use thick plate theory in computing fundamental frequencies for the thick
shear-deformable plate.

It will be appreciated now that one can easily compute eigenvalues for plates with less
than four elastically supported edges, as discussed earlier. One need only delete from the
eigenvalue matrix the contribution associated with the non-elastically supported edge.
Such edges will have simple support. It will be apparent that if these latter edges are to
be clamped or free the analyst must choose building blocks with slightly different boundary
conditions.

In Figures 4 and 5 computed results are presented for first mode vibration of a square
plate with elastic support along three edges. Similar behaviour is observed, with different
limits approached at the upper ends of the curves, of course. In Figure 6 results are
presented for a square plate with two adjacent edges given elastic support. It is found that
for this plate, and the following one, the approach toward known upper limits is
considerably more rapid as the torsional coefficient is increased. For this reason results
are presented for a range of KIR from 0·0–60·0, only. The final data, presented in Figure 7,
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Figure 7. Eigenvalues versus torsional coefficient K1R for square plate with uniform elastic support on one edge
only. Key as Figure 2.

T 1

Computed eigenvalues for first mode free vibration of square shear-deformable plates with
rotational elastic edge support. Equal stiffness assigned to all elastically supported edges

K1R (Torsional coefficient)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

fh 1 2 3 4 5 7·5 10·0 15·0

Four edges—equal elastic support
0·01 21·49 22·89 24·02 24·97 25·78 27·34 28·48 30·04
0·10 20·65 21·90 22·90 23·72 24·41 25·74 26·69 27·96

Three edges—equal elastic support
0·01 21·06 22·11 22·96 23·68 24·28 25·46 26·31 27·47
0·10 20·26 21·20 21·95 22·57 23·09 24·09 24·80 25·75

Two adjacent edges—equal elastic support
0·01 20·61 21·30 21·30 22·31 22·69 23·42 23·94 24·63
0·10 19·85 20·47 20·96 21·36 21·69 22·32 22·76 23·33

One edge with elastic support
0·01 20·18 20·53 20·82 21·06 21·26 21·65 21·94 22·31
0·10 19·46 19·78 20·03 20·04 20·42 20·75 20·99 21·30

pertains to a square plate with elastic support along one edge only. The reader will
appreciate that a superposition of building blocks is really not required for this problem.
Only a solution to the first building block is required. However, by deleting the
contributions of the other three building blocks to the eigenvalue matrix as described
earlier, accurate eigenvalues are immediately available for this latter problem. These results
are presented in the interest of completeness.

It is recognized that the main function of the curves presented so far is to give the reader
an insight with regard to how eigenvalues may be expected to vary with edge rotational
stiffness for the shear-deformable plates discussed here. Some designers or researchers may
wish to have available numerical results against which they can compare their computed
results, whether based on the computational procedure described here, or some other
procedure. For this reason eigenvalues computed here are presented in digital form in
Table 1. Intervals in the parameter K1R are selected between one and fifteen with a view
to giving approximately equal differences in tabulated eigenvalues as the stiffness is
increased. As indicated earlier, these eigenvalues are considered to have four digit accuracy.
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3. SUMMARY AND CONCLUSIONS

The Superposition–Galerkin method exploited here to obtain accurate eigenvalues for
shear-deformable plates with torsional elastic edge support functions extremely well and
is easy to employ. This simplification comes about largely because complicated sixth order
ordinary differential equations, as discussed in reference [7], need not be contended with,
as is the case in the traditional superposition method. Also, satisfaction of the boundary
conditions is much easier to achieve. While the present study is devoted to
shear-deformable thick isotropic plates it will be apparent that the same mathematical
proceedure can be exploited to study the vibration behaviour of shear-deformable
composite plates. As seen earlier, other families of boundary conditions can be easily
handled with the computational procedure described here. To the author’s knowledge the
work reported here represents a significant step forward in the ability to compute free
vibration behaviour of shear-deformable elastically supported rectangular plates.
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APPENDIX: LIST OF SYMBOLS

a,b plate edge lengths
D plate flexural rigidity
k1, k2, k3, k4 torosional elastic stiffness

constants
KR1, KR2, KR3, KR4 dimensionless torsional

elastic coefficients
K number of terms used in

Calerkin expansions
KK number of terms used in

representing plate lateral
displacement and cross-
sectional rotations

Mj , Mh dimensionless bending
moments associated with
j, and h directions, re-
spectively

Mjh dimensionless twisting
moment

Qj , Qh dimensionless shear
forces associated with j
and h directions, respect-
ively

w plate lateral displacement
divided by edge length a

k2 shear correction fac-
tor=0·8601

n Poisson ratio for plate
material

n1 (1− n)/2
n2 (1+ n)/2
n3 6k2(1− n)
f plate aspect ratio b/a
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fh ratio of plate thickness to
edge length a

j, h co-ordinate distances di-
vided by edge lengths a,
and b, respectively

Ce , Ch Plate cross-sectional ro-
tations associated with j

and h directions, respect-
ively

l2 eigenvalue=va2zr/D
v circular frequency of

plate vibration
r mass of plate per unit

area


